Enhanced radiobiological effects at the distal end of a clinical proton beam: in vitro study

نویسندگان

  • Yoshitaka Matsumoto
  • Taeko Matsuura
  • Mami Wada
  • Yusuke Egashira
  • Teiji Nishio
  • Yoshiya Furusawa
چکیده

In the clinic, the relative biological effectiveness (RBE) value of 1.1 has usually been used in relation to the whole depth of the spread-out Bragg-peak (SOBP) of proton beams. The aim of this study was to confirm the actual biological effect in the SOBP at the very distal end of clinical proton beams using an in vitro cell system. A human salivary gland tumor cell line, HSG, was irradiated with clinical proton beams (accelerated by 190 MeV/u) and examined at different depths in the distal part and the center of the SOBP. Surviving fractions were analyzed with the colony formation assay. Cell survival curves and the survival parameters were obtained by fitting with the linear-quadratic (LQ) model. The RBE at each depth of the proton SOBP compared with that for X-rays was calculated by the biological equivalent dose, and the biological dose distribution was calculated from the RBE and the absorbed dose at each position. Although the physical dose distribution was flat in the SOBP, the RBE values calculated by the equivalent dose were significantly higher (up to 1.56 times) at the distal end than at the center of the SOBP. Additionally, the range of the isoeffective dose was extended beyond the range of the SOBP (up to 4.1 mm). From a clinical point of view, this may cause unexpected side effects to normal tissues at the distal position of the beam. It is important that the beam design and treatment planning take into consideration the biological dose distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...

متن کامل

Heavy-ion tumor therapy: Physical and radiobiological benefits

High-energy beams of charged nuclear particles !protons and heavier ions" offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum !Bragg peak" near the end of range with a sharp fall-off at the distal edge. Ta...

متن کامل

Proton beam dosimetry by CR-39 track-etched detector

Background: High and intermediate energy protons are not able to form a track in a solid state nuclear track detector (SSNTD) directly. However, such tracks can be formed through secondary particles created during primary radiation nuclear reactions in a SSNTD. Materials and Methods: The protons with primary energies of 9.6 and 30 MeV available at the cyclotron accelerator with corresponding lo...

متن کامل

Physical characteristics of electron beam from conventional and beam shaper IOERT applicator: A comparison study

Introduction: Intraoperative electron radiation therapy (IOERT) is one of the cancer treatment techniques that delivers high doses to tumor bed during surgery. IOERT can be performed by either conventional LINACs or dedicated IORT accelerators such as LIAC (Light Intraoperative Accelerator). Two types of applicators can be used with LIAC dedicated accelerator including conventi...

متن کامل

Calculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code

Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver.   Materials and Methods: For si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2014